System simulation

Shorter development cycles and better products through system simulation

We support you in the development of complex products with our know-how in thermodynamics, process engineering and simulation.

Learn more

What is system simulation?

System simulation is used to reproduce technical systems in mathematical models in order to predict their behavior on the computer by means of numerical simulation. In this way, it is possible to identify problems at an early stage and to carry out extensive variant studies.

In contrast to detailed fluid dynamics simulation (CFD) or thermal analysis in solids (FEM), system simulation uses coarser spatial resolutions. The focus is on the interactions between different system components and physical effects. Therefore, the terms 0D/1D simulation and multiphysics simulation have become established. Both can be seen as synonymous to system simulation.

Both steady-state and dynamic problems can be investigated. Widely used tools for system simulation are Simulink and Dymola, although there are many other general and application-specific tools. We are well versed in both the theory and practice of systems simulation technology. We are happy to share this knowledge with you!

TIL Suite system model on a laptop

Benefits of system simulation

Domains of system simulation

Thermal systems

We are well versed in the fundamentals of thermodynamics and model almost any thermal system.

For many applications, we have ready-to-use simulation models in our TIL model library and can deliver results very quickly. For example for refrigeration cycles, heat pumps, battery thermal management and hydrogen refueling stations.

In individual projects we adapt existing models or develop new simulation models to answer your specific questions.

Model of a hydrogen filling station

Multiphysics simulation

We may be experts in thermal systems, but we know that the world is not just pressure, temperature and enthalpy. For example, to develop the optimal refrigerant compressor, mechanical and electrical engineering must be taken into account.

In most projects, we use the Modelica modeling language. This equation-oriented language is a perfect tool to model systems across domains.

For many technical areas, there are model libraries and experts who are familiar with them. We are happy to work with them on your tasks.

We use the best tools for system simulation...

...and if we couldn't find one, we made it ourselves.

TIL Suite

Our model library for thermal systems

MUSCOD

High-performance optimization algorithm

Modelica

Object-oriented, multi-domain modeling language

Python

Multi-purpose, high-level programming language

TLK Energy Apps

Cloud simulation platform

Integrate system simulation into your company

System simulation performed by TLK Energy

The easiest way to enter the world of system simulation is in a project. Especially if there is no simulation competence in your company yet, it makes sense that we take over the model building and the simulation.

Perform system simulation yourself

With simulation competence in your own company, you can carry out simulations independently. We can provide you with the necessary software and consulting services. You can learn how to use the software in our training courses.

References

Emerson

Supermarket refrigeration CO2 cycle concepts

Emerson develops components and systems for supermarket refrigeration. Due to its environmental benefits CO2 as refrigerant is becoming more and more important in this sector. But compared to traditional refrigerants the thermodynamic properties of CO2 are totally different (high pressures and low critical temperature). Designing efficient CO2 cycles is challenging and there are many different cycle concepts proposed. Together with Emerson experts we have developed simulation models for a number of different concepts and run a simulation study to compare the seasonal efficiency of these cycles.

Eric Winandy et al.: Assessment of the seasonal efficiency of different CO2 booster architectures for different climates. DKV Jahrestagung, 2018

Vaillant

Wärmepumpen­modellierung für HiL-Tests

Vaillant hat in der Entwicklung von Wärmepumpenreglern eine umfassende Teststrategie etabliert. Bevor die Regler im Labor an reale Wärmepumpen angeschlossen werden, werden sie an virtuelle Wärmepumpen angeschlossen, die auf einer speziellen Echtzeit-Simulationshardware und -software von dSPACE laufen. Entscheidend für diese sogenannten Hardware-in-the-Loop (HiL)-Tests sind Simulationsmodelle der Wärmepumpen. Wir haben diese Modelle für Vaillant mit unserer Modelica-Bibliothek TIL entwickelt und eine zuverlässige Werkzeugkette aufgebaut, um diese Modelle auf die dSPACE-Plattform zu exportieren. Die Modelle beinhalten ein vollständiges dynamisches physikalisches Modell des Kältekreislaufs. Es kann die Umschaltung der Kältemittelflussrichtung, die durch unterschiedliche Modi für Abtauung, Heizung und Kühlung verursacht wird, verarbeiten. Vaillant erkennt nun Probleme im Regelungscode viel früher und spart mit diesen virtuellen Tests eine beträchtliche Menge an teuren Laborversuchen.

Manuel Gräber et al.: Physical Modeling of Heat Pumps for Hardware-in-the-Loop Testing. 13th International Modelica Conference, 2019

Volkswagen

Batterie-Thermomanagement

Gemeinsam mit Volkswagen haben wir Simulationsmodelle für Batterie-Thermomanagementsysteme entwickelt. Die Geometrie der Kühlplatten und ihre Strömungsmuster werden durch Diskretisierung mit finiten Volumina berücksichtigt. Im Vergleich zu detaillierten CFD-Simulationen ist die räumliche Auflösung deutlich geringer, aber immer noch hoch genug, um zuverlässige Ergebnisse zu erzielen. Dieser Ansatz reduziert die Berechnungszeit drastisch und ermöglicht die Verwendung von numerischen Optimierungsalgorithmen oder groß angelegte Simulationsstudien. Kühlsysteme können mit weniger Druckverlust und erhöhter Energieeffizienz ausgelegt werden.

Robert Wendland et al.: Dynamic Optimization of Thermal Management and Cooling Plate Design for Battery Systems. 27th Aachen Colloquium Automobile and Engine Technology, 2018

Ready to start a new project?

Call us at +49 241 412 50 645, e-mail us to info@tlk-energy.de or find us on LinkedIn.